Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULB (5)

ULiège (5)

VIVES (5)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2020 (10)

2019 (1)

Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
Bainite and Martensite: Developments and Challenges
Author:
ISBN: 303928858X 3039288571 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The microstructures of both martensite and bainite, although sharing some common features, depict a plethora of subtle differences that made them unique when studied in further detail. Tailoring the final properties of a microstructure based on one or the other as well as in combination with others and exploring more sophisticated concepts, such as Q&P and nanostructured bainite, are the topics which are the focus of research around the world. In understanding the key microstructural parameters controlling the final properties as well as definition of adequate process parameters to attain the desired microstructures requires that a proper understanding of the mechanism ruling their transformation and a detailed characterization first be acheived. The development of new and powerful scientific techniques and equipment (EBSD, APT, HRTEM, etc.) allow us to gain fundamental insights that help to establish some of the principles by which those microstructures are known. The developments accompanying such findings lead to further developments and intensive research providing the required metallurgical support.


Book
Thermomechanical Processing of Steels
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book gathers a collection of papers summarizing some of the latest developments in the thermomechanical processing of steels. The replacement of conventional rolling plus post-rolling heat treatments by integrated controlled forming and cooling strategies implies important reductions in energy consumption, increases in productivity and more compact facilities in the steel industry. The metallurgical challenges that this integration implies, though, are relevant and impressive developments that have been achieved over the last 40 years. The frequency of the development of new steel grades and processing technologies devoted to thermomechanically processed products is increasing, and their implementation is being expended to higher value added products and applications. In addition to the metallurgical peculiarities and relationships between chemical composition, process and final properties, the relevance impact of advanced characterization techniques and innovative modelling strategies provides new tools to achieve the further deployment of the TMCP technologies. The contents of the book cover low carbon microalloyed grades, ferritic stainless steels and Fe–Al–Cr alloys, medium-Mn steels, and medium carbon grades. Authors of the chapters of this "Thermomechanical Processing of Steels" book represent some of the most relevant research groups from both the steel industry and academia.


Book
Thermomechanical Processing of Steels
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book gathers a collection of papers summarizing some of the latest developments in the thermomechanical processing of steels. The replacement of conventional rolling plus post-rolling heat treatments by integrated controlled forming and cooling strategies implies important reductions in energy consumption, increases in productivity and more compact facilities in the steel industry. The metallurgical challenges that this integration implies, though, are relevant and impressive developments that have been achieved over the last 40 years. The frequency of the development of new steel grades and processing technologies devoted to thermomechanically processed products is increasing, and their implementation is being expended to higher value added products and applications. In addition to the metallurgical peculiarities and relationships between chemical composition, process and final properties, the relevance impact of advanced characterization techniques and innovative modelling strategies provides new tools to achieve the further deployment of the TMCP technologies. The contents of the book cover low carbon microalloyed grades, ferritic stainless steels and Fe–Al–Cr alloys, medium-Mn steels, and medium carbon grades. Authors of the chapters of this "Thermomechanical Processing of Steels" book represent some of the most relevant research groups from both the steel industry and academia.


Book
Thermomechanical Processing of Steels
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book gathers a collection of papers summarizing some of the latest developments in the thermomechanical processing of steels. The replacement of conventional rolling plus post-rolling heat treatments by integrated controlled forming and cooling strategies implies important reductions in energy consumption, increases in productivity and more compact facilities in the steel industry. The metallurgical challenges that this integration implies, though, are relevant and impressive developments that have been achieved over the last 40 years. The frequency of the development of new steel grades and processing technologies devoted to thermomechanically processed products is increasing, and their implementation is being expended to higher value added products and applications. In addition to the metallurgical peculiarities and relationships between chemical composition, process and final properties, the relevance impact of advanced characterization techniques and innovative modelling strategies provides new tools to achieve the further deployment of the TMCP technologies. The contents of the book cover low carbon microalloyed grades, ferritic stainless steels and Fe–Al–Cr alloys, medium-Mn steels, and medium carbon grades. Authors of the chapters of this "Thermomechanical Processing of Steels" book represent some of the most relevant research groups from both the steel industry and academia.


Book
Characterization of Welded Joints
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Welding remains one of the most studied manufacturing processes worldwide. It has always assumed a vital importance in terms of research, and the market demand for increasingly complex solutions has kept the search for new solutions around welding more and more alive. This book describes, in 14 chapters, recent investigations around various welding processes, showing new developments in important areas, such as biomedicine or the automotive industry. Following the current trend, several developments around the friction stir welding process are also described. However, other processes are also studied, and new interesting developments are presented. Problems normally felt in welding, such as the installation of internal stresses or the generation of defects are also studied, and very interesting solutions are provided. Thus, this book is of particular importance for a very wide audience, ranging from the technician who is curious to want to know more and more, to the professor who seeks the latest developments in the matter to prepare his classes.


Book
Characterization of Welded Joints
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Welding remains one of the most studied manufacturing processes worldwide. It has always assumed a vital importance in terms of research, and the market demand for increasingly complex solutions has kept the search for new solutions around welding more and more alive. This book describes, in 14 chapters, recent investigations around various welding processes, showing new developments in important areas, such as biomedicine or the automotive industry. Following the current trend, several developments around the friction stir welding process are also described. However, other processes are also studied, and new interesting developments are presented. Problems normally felt in welding, such as the installation of internal stresses or the generation of defects are also studied, and very interesting solutions are provided. Thus, this book is of particular importance for a very wide audience, ranging from the technician who is curious to want to know more and more, to the professor who seeks the latest developments in the matter to prepare his classes.


Book
Characterization of Welded Joints
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Welding remains one of the most studied manufacturing processes worldwide. It has always assumed a vital importance in terms of research, and the market demand for increasingly complex solutions has kept the search for new solutions around welding more and more alive. This book describes, in 14 chapters, recent investigations around various welding processes, showing new developments in important areas, such as biomedicine or the automotive industry. Following the current trend, several developments around the friction stir welding process are also described. However, other processes are also studied, and new interesting developments are presented. Problems normally felt in welding, such as the installation of internal stresses or the generation of defects are also studied, and very interesting solutions are provided. Thus, this book is of particular importance for a very wide audience, ranging from the technician who is curious to want to know more and more, to the professor who seeks the latest developments in the matter to prepare his classes.


Book
Processing-Structure-Property Relationships in Metals
Authors: ---
ISBN: 3039217712 3039217704 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.

Keywords

high speed steel --- n/a --- tempering --- microstructure. --- microstructure --- severe plastic deformation --- aging treatment --- indentation hardness --- Nb tube --- secondary recrystallization --- static mechanical behavior --- image analysis --- nanostructured coatings --- thin aluminum sheet --- precipitation behavior --- additive manufacturing --- Ti-6Al-4V alloy --- grain boundary --- property-microstructure-process relationship --- aeronautic applications --- inductive hot pressing --- fracture surface --- indentation modulus --- alloys --- intermetallic --- ultrafine grain --- columnar microstructure --- titanium composites --- multimodal --- steering knuckles --- ultra-fine grain --- damping --- process monitoring --- Al alloys --- tribology --- retained austenite --- mechanical properties --- texture inhomogeneity --- metal posts --- FEGSEM --- ?-platelet thickness --- anelasticity --- warm working --- dental materials --- computer-aided design (CAD) --- SEM --- high strength --- SEBM --- non-monotonic simple shear strains --- cavitation erosion --- aluminum film --- impact toughness --- wear --- mechanical property --- in situ secondary phases --- bainite rail --- corrosion resistance --- macro-instrumented indentation test --- EBM --- cryorolling --- aluminum alloy --- equal channel angular pressing --- microstructure inhomogeneity --- casting --- electron backscatter diffraction --- prediction model --- grain boundaries --- porosity --- texture --- high pressure die casting --- shear strain reversal --- finite element analysis --- thin films --- AZ91 alloy --- tensile properties --- tensile property --- Al 6061 alloys --- aging --- reduction --- Mg-10Y-6Gd-1.5Zn-0.5Zr --- caliber-rolling --- shrinkage


Book
Design of Alloy Metals for Low-Mass Structures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.

Keywords

History of engineering & technology --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q&amp --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer


Book
Design of Alloy Metals for Low-Mass Structures
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.

Keywords

History of engineering & technology --- Pd–10Au alloy --- shear compression --- texture --- grain boundary sliding --- TiAl alloys --- dislocation --- twinning --- nanoindentation --- ECCI --- disconnection density --- displacement discontinuity --- crack nucleation --- crack opening displacement --- digital image correlation --- Al-Cu-Li alloys --- titanium aluminides --- grain refinement --- solidification --- inoculation --- TWIP steel --- ECAP --- deformation twinning --- VPSC --- simulation --- industrial ingot --- steel --- dendritic grain size --- titanium --- strain hardening --- anisotropy --- strain heterogeneity --- acoustic emission --- statistical analysis --- collective dislocation dynamics --- Q&amp --- P --- transition carbide --- precipitation --- HEXRD --- TEM --- grain size --- crystal plasticity --- elasto-visco-plastic self-consistent (EVPSC) scheme --- hardening --- dislocation density --- ironmaking --- direct reduction --- iron ore --- DRI --- shaft furnace --- mathematical model --- CO2 emissions --- lattice structures --- porous materials --- 3D surface maps --- finite element --- fatigue --- plasticity --- steel ladle --- non-metallic inclusions --- aggregation --- lateral extrusion ratio --- Finite Element (FE) simulation --- analytical modelling --- plastic flow machining --- back pressure --- polycrystalline β-Ti --- elastic anisotropy --- elastic/plastic incompatibilities --- elasto-viscoplastic self-consistent scheme (EVPSC) --- slip activity --- microsegregation --- gas tungsten arc welding --- directional solidification --- FM52 filler metal --- ERNiCrFe-7 --- tip undercooling --- rolling --- asymmetric ratio --- thickness reduction per pass --- magnesium powders --- HPT consolidation --- microstructure --- hardness --- H-activation --- high entropy alloy --- crystallographic texture --- groove rolling --- elastic properties --- non-Schmid effects --- Taylor multiscale scheme --- localized necking --- bifurcation theory --- excess nitrogen --- clusters precipitation --- Fe–Si and Fe–Cr nitrided alloys --- APT and TEM characterization --- metal matrix composite --- in situ X-ray diffraction --- internal stresses --- phase transformation --- nickel-based single crystal superalloy --- lattice mismatch --- in situ experiments --- X-ray diffractometry --- creep --- dislocations --- diffraction --- fast Fourier transform (FFT)-based method --- discrete green operator --- voxelization artifacts --- sub-voxel method --- simulated diffraction peaks --- scattered intensity --- shape memory alloys --- architected cellular material --- numerical homogenization --- multiscale finite element method --- bainite --- martensite --- isothermal treatment --- mechanical properties --- austenite reconstruction --- variant --- magnesium --- self consistent methods --- modeling --- heterogeneous kinetics --- heat and mass transfer

Listing 1 - 10 of 11 << page
of 2
>>
Sort by